8,402 research outputs found

    Neutral absorber dips in the periodic burster LMXB XB 1323-619 from Suzaku

    Get PDF
    We present results of an observation with Suzaku of the dipping, periodic bursting low mass X-ray binary XB 1323-619. Using the energy band 0.8 - 70 keV, we show that the source spectrum is well-described as the emission of an extended accretion disk corona, plus a small contribution of blackbody emission from the neutron star. The dip spectrum is well-fitted by the progressive covering model in which the extended ADC is progressively overlapped by the absorbing bulge of low ionization state in the outer accretion disk and that dipping is basically due to photoelectric absorption in the bulge. An energy-independent decrease of flux at high energies (20 - 70 keV) is shown to be consistent with the level of Thomson scattering expected in the bulge. An absorption feature at 6.67 keV (Fe XXV) is detected in the non-dip spectrum and other possible weak features. In dipping, absorption lines of medium and highly ionized states are seen suggestive of absorption in the ADC but there is no evidence that the lines are stronger than in non-dip. We show that the luminosity of the source has changed substantially since the Exosat observation of 1985, increasing in luminosity between 1985 and 2003, then in 2003 - 2007 falling to the initial low value. X-ray bursting has again become periodic, which it ceased to do in its highest luminosity state, and we find that the X-ray bursts exhibit both the fast decay and later slow decay characteristic of the rp burning process. We present arguments against the recent proposal that the decrease of continuum flux in the dipping LMXB in general can be explained as absorption in an ionized absorber rather than in the bulge in the outer disk generally accepted to be the site of absorption.Comment: 12 pages, 6 figures, Astronomy and Astrophysics in pres

    Assessment survey : Lewis.

    Get PDF

    Stellar escapers from M67 can reach solar-like Galactic orbits

    Full text link
    We investigate the possibility that the Sun could have been born in M67 by carrying out NN-body simulations of M67-like clusters in a time-varying Galactic environment, and following the galactic orbits of stars that escape from them. We find that model clusters that occupy similar orbits to M67 today can be divided up into three groups. Hot clusters are born with a high initial zz-velocity, depleted clusters are born on cold orbits but are destroyed by GMC encounters in the Galactic disc, and scattered clusters are born on cold orbits and survive with more than 1000 stars at an age of 4.6 Gyr. We find that all cluster models in all three cluster groups have stellar escapers that are kinematicaly similar to the Sun. Hot clusters having the lowest such fraction f⊙=0.06f_{\odot} = 0.06 %, whilst depleted clusters have the highest fraction, f⊙=6.61f_{\odot} = 6.61 %. We calculate that clusters that are destroyed in the Galactic disc have a specific frequency of escapers that end up on solar-like orbits that is ∼\sim 2 times that of escapers from clusters that survive their journey

    BeppoSAX observation of the eclipsing dipping X-ray binary X1658-298

    Get PDF
    Results of a 2000 August 12-13 BeppoSAX observation of the 7.1 hr eclipsing, dipping, bursting, transient, low-mass X-ray binary (LMXRB) X1658-298 are presented. The spectrum outside of eclipses, dips and bursts can be modeled by the combination of a soft disk-blackbody and a harder Comptonized component with a small amount (1.3 10E21 atom/cm2) of low-energy absorption. In contrast, an RXTE observation 18 months earlier during the same outburst, measured an absorption of 5.0 10E22 atom/cm2. Such a change is consistent with a thinning of the accretion disk as the outburst progresses. Structured residuals from the best-fit spectral model are present which are tentatively identified with Ne-K/Fe-L and Fe-K shell emission. The spectral changes during dips are complex and may be modeled by a strong (~3 10E23 atom/cm2) increase in absorption of the Comptonized component only, together with reductions in normalizations of both spectral components. This behavior is in contrast to the ``complex continuum'' model for X-ray dip sources, where the softer blackbody component rapidly suffers strong absorption. It is however, similar to that found during recent XMM-Newton observations of the eclipsing, dipping, LMXRB EXO0748-676.Comment: 11 pages. Accepted for publication in A&A

    The Just-Enough Club

    Get PDF
    This is a novel about contemporary rodeo cowboys

    Discovery of narrow X-ray absorption features from the dipping low-mass X-ray binary X 1624-490 with XMM-Newton

    Get PDF
    We report the discovery of narrow X-ray absorption features from the dipping low-mass X-ray binary X 1624-490 during an XMM-Newton observation in 2001 February. The features are identified with the K alpha absorption lines of Fe xxv and Fe xxvi and have energies of 6.72 +/- 0.03 keV and 7.00 +/- 0.02 keV and equivalent widths (EWs) of -7.5 +1.7 -6.3 eV and -16.6 +1.9 -5.9 eV, respectively. The EWs show no obvious dependence on orbital phase, except during a dip, and correspond to a column of greater than 10^17.3 Fe atom /cm2. In addition, faint absorption features tentatively identified with Ni xxvii K alpha and Fe xxvi K beta may be present. A broad emission feature at 6.58 +0.07 -0.04 keV with an EW of 78 +19 -6 eV is also evident. This is probably the 6.4 keV feature reported by earlier missions since fitting a single Gaussian to the entire Fe-K region gives an energy of 6.39 +0.03 -0.04 keV. A deep absorption feature is present during the dip with an energy consistent with Fe xxv K alpha. This is the second dipping LMXRB source from which narrow Fe absorption features have been observed. Until recently the only X-ray binaries known to exhibit narrow X-ray absorption lines were two superluminal jet sources and it had been suggested that these features are related to the jet formation mechanism. It now appears likely that ionized absorption features may be common characteristics of accreting systems with accretion disks.Comment: 6 pages. To appear in A&
    • …
    corecore